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Experimental data for viscosities, diffusion coefficients of ferrocene, and conductivities were obtained for three
ionic liquid mixtures: 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), N-methyl-N-butylpyrrolidinium
bis(trifluoromethylsulfonyl)imide (bmpyNTf2), andN-methyl-N-hexylpyrrolidinium bis(trifluoromethylsulfonyl)-
imide (hmpyNTf2) + dimethylformamide (DMF) or+ 3-picoline as cosolvents, in the range of temperatureT )
(295.2 to 325.2) K. At a given temperature, the viscosity decreases exponentially with the mole fraction of the
added cosolvent, and the variation of the diffusion coefficient agrees with the Stokes-Einstein law. Concerning
the conductivity, addition of the polar solvent dimethylformamide produces an increase much greater than the
addition of 3-picoline. The viscosity, diffusion coefficient, and conductivity follow the Arrhenius model in the
explored temperature range. Consequently, moderate heating and addition of a cosolvent are two good means for
obtaining conditions well adapted to electrosynthetic applications in ionic liquids.

Introduction

Modern organic chemistry seeks efficient and cheap synthetic
procedures as well as environmentally benign experimental
conditions. That is the reason the interest in the properties of
room temperature ionic liquids (ILs) has been rapidly expanding
in recent years. Indeed, it has been already demonstrated that a
wide range of organic syntheses, including catalyzed reactions,
can be carried out in these alternative nonflammable solvents,
which are attractive for their easy access, thermal stability, and
low vapor pressure. Besides, they often allow simple product
recovery and solvent recycling.1-3

In this context of eco-friendly procedures, electrosynthesis
remains an attractive method since the use of electrons as a
reagent does not involve the formation of any side product. So,
regarding electrochemical processes, ILs appear at first sight
to be convenient solvents since their ionic structure should afford
a good conductivity without addition of a supporting electrolyte.

This explains why ILs have recently received increasing
attention for their use in organic electrochemistry.4,5 As for us,
we reported that various electroreductive couplings involving
organic halides can be efficiently achieved in ILs either directly
or by nickel-complex-mediated electrosyntheses.6 Electrolyses
were conducted in a diaphragm-less cell by setting a constant
current intensity. During this work, we noticed that pure ILs
were not perfectly adapted to preparative scale electrosyntheses
since a current density exceeding a few mA‚cm-2 resulted in a
very high cell voltage (> 40 V). This drawback was overcome
either by heating the solution toT ) (313 to 323) K or by adding
a small amount of a molecular cosolvent (cs) such as volume
fraction of dimethylformamide (DMF) (5 to 10) % or, even
better, by combining these two means.

The important ohmic drop inducing the high cell voltage in
pure IL may arise from a slow diffusion of electroactive species
and/or a low ionic conductivity. These two features can be due

to a high viscosity for the medium. For the conductivity, poor
ionic dissociation of the IL can also be involved. Many papers
have already been devoted to the determination of physical
properties of binary IL/molecular solvent systems (water,
alcohols, and various organic solvents). They show that addition
of a cosolvent produces a decrease in viscosity and an increase
in conductivity.7-18

Therefore, we have thought it advisable to acquire physico-
chemical data in mixtures involving an IL and a molecular
organic solvent. Actually, the knowledge of such properties
seemed to us that it would provide a valuable means to find
aprotic media well-adapted for organic electrosynthesis. This
explains the choice of the binary systems used in the present
work. Imidazolium or pyrrolidinium salts are Ils that present a
large electrochemical window.14,19In organic electrochemistry,
dimethylformamide (DMF) is a polar aprotic solvent used in
electroreductive processes and 3-picoline can act simultaneously
as aprotic cosolvent and ligand for transition metal.

Experimental Section

Synthesis of Ionic Liquids.All chemicals were used as
received, and ILs were prepared according to reported proce-
dures.20 N-Methylpyrrolidine or methylimidazole yield the
corresponding ammonium salt by reaction with an alkyl bromide
(1-butylbromide or 1-hexylbromide). Anions bromide (Br-)
were replaced by tetrafluoroborate (BF4

-) or bis(trifluorometh-
ylsulfonyl)imide (NTf2-) by vigorous stirring of the alkylam-
monium bromide with aqueous solutions of sodium tetrafluo-
roborate (NaBF4) or lithium bis(trifluoromethylsulfonyl)imide
(LiNTf 2), respectively. ILs were washed with distilled water
until no bromide traces were detected by addition of silver nitrate
(AgNO3) and then dried overnight atT ) 353 K under vacuum.
1H and13C NMR spectra of ILs were recorded with a Bruker
Avance 300 MHz and found to be in agreement with litera-
ture.21,22 Water content in each IL was determined by Karl
Fischer titration. It did not exceed 10-2 mole fraction.
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Electrochemical and Physical Methods.Diffusion coef-
ficients were obtained by classical electrochemical methods
using a ParStat 2253 (Princeton Applied Research) with
PowerSuite software, in a 20 cm3 homemade three electrode
cell. The reference, working, and counter electrodes consisted
respectively of a silver wire (pseudo-reference), a gold disk
(≈0.5 mm diameter), and a gold wire. The effective working
electrode area was determined from the reversible one-electron
oxidation of ferrocene 1 mmol‚L-1 in DMF + NBu4BF4 0.1
mol‚L-1 at T ) 298.2 K and using the Cottrell law (eq 1):

whereI is the current intensity,n is the amount of electrons,A
is the electrode area,D is the diffusion coefficient (taken as
1.07× 10-5 cm2‚s-1 at 298.2 K),23 C is the bulk concentration
of the diffusing species, and t is the time. Since caracteristics
of the electrode are known to be independent of temperature
for the temperature range of the measurements, calibration of
the electrode area was done at only one temperature. The
diffusion coefficient of ferrocene (DFc) was then measured in
ILs, pure or mixed with DMF for [Fc]) 3 × 10-2 mol‚L-1,
either by chronoamperometry using eq 1 or by cyclic voltametry
and use of the Randle-Sevcik equation (eq 2):

whereIp is the peak intensity andν is the scan rate. PlottingIP

versusν1/2 gives a linear function with a slope proportional to
D1/2 and with standard deviations(Ip) e 0.035µA (typical peak
current was in the rangeIp ) (2 to 35)µA). In a first series of
experiments, results obtained by potentiostatic or potentiody-
namic method were well-concordant. Therefore, diffusion
coefficients were determined only by cyclic voltametry.

Values of the viscosity were obtained using an AR 1000 (TA
Instruments) rheometer equipped with a Peltier plate temperature
controller (temperature uncertainty( 0.1 K) and a 60 mm
diameter aluminum cone. The 992, 97.5, and 9.4 mPa‚s oils
(from Brookfield Engineering Laboratories) were used as
standards atT ) 298.2 K since characteristics of the rheometer
are known to be independent of temperature.

Conductimetry measurements were carried out with a Radi-
ometer CDM 210 Meterlab conductimeter with a CDC 745-9
cell calibrated with a 0.1 mol‚L-1 aqueous KCl solution (12.88
mS‚cm-1 at T ) 293.2 K). We have not considered the
possibility of variation of the calibration with temperature.

Relative uncertainities were calculated to be( 5 % for
diffusion coefficients;( 1 % for viscosities, and( 0.2 % for
conductivities. For all experiments, temperature was controlled
at( 0.1 K. Uncertainties presented for activation energies were
calculated from the slope given by the linear regression with a
confidence interval of 95 %. Standard deviations were calculated
according to classical methods.

Results and Discussion

The three imidazolium or pyrrolidinium salts presented in
Chart 1 were chosen as model ILs for this study since they are
convenient media for both cathodic and anodic electrosynthetic
applications. We first measured the viscosityη for various
amount of DMF (4) in each IL (Table 1). Figure 1a shows that
the viscosity of IL+ DMF mixtures decreases exponentially
when the mole fraction (x) of (4) increases (0e x e 0.7),
according to the empirical equation (eq 3):

whereηIL is the viscosity of the pure IL andA is a constant.
This behavior agrees with previous studies of various IL or
inorganic salt/molecular solvent binary systems, which mention
similar empirical results.8,9,13,24,25Our results and literature data
for ηIL and constantA are presented in Table 2. In most cases
our results are in agreement with previous reported values.
However, some literature data present large differences. The
purity of IL (traces either of water or starting materials ...) is
perhaps partly responsible for these differences.

Diffusion coefficient of ferrocene (DFc), which is usually
chosen as a model of electroactive species in numerous solvents
including ILs,27-28 was determined in bmimBF4 (1) and bmpy-

Chart 1. Ionic Liquids Studied in This Work

Table 1. Viscosity (η) of bmimBF4 (1), bmpyNTf2 (2), and
hmpyNTf2 (3) + DMF (4) Mixtures at T ) 295.2 K with Standard
Deviation (s(η))

(1) + (4) (2) + (4) (3) + (4)

x4 η/mPa‚s x4 η/mPa‚s x4 η/mPa‚s

0.00 122.9 0.00 80.0 0.00 119.8
0.14 65.6 0.13 40.3 0.10 83.0
0.23 45.4 0.24 29.6 0.21 56.7
0.33 26.3 0.33 21.7 0.30 42.9
0.44 16.1 0.45 14.4 0.40 28.1
0.53 11.2 0.54 9.9 0.50 19.6
0.61 9.8 0.64 6.6 0.60 12.0
0.73 4.7 0.74 3.7 0.70 5.5

s(η)/mPa‚s
0.68 1.03 2.31

I ) nFAD1/2C/(πt)1/2 (1)

Ip ) 0.4463nF(nF/RT)1/2AD1/2Cν1/2 (2)

Figure 1. Logarithm of viscosity (η) (a) and logarithm of ferrocene
diffusion coefficient (DFc) (b) in 9, bmimBF4 (1); [, bmpyNTf2 (2); 2,
hmpyNTf2 (3) as a function of DMF (4) mole fraction.T ) 295.2 K.

ln η ) ln ηIL + Ax4 (3)
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NTf2 (2) + DMF (4) mixtures (Table 3). Figure 1b shows that
the diffusion coefficient of ferrocene (DFc) increases exponen-
tially when the mole fraction of DMF was increased in the IL
+ DMF mixture. Values of the diffusion coefficient in pure
ILs agrees with literature.28 The exponential increase of viscosity
along with the exponential decrease of the diffusion coefficient
versus the DMF mole fraction indicates that the diffusion of
ferrocene follows the classical Stokes-Einstein equation (eq
4):

wherek is Boltzmann’s constant,r is the effective radius of the
diffusing species, andc is a constant. It can be noted that, in
pure ILs at room temperature,DFc is about 2 to 3 orders of
magnitude lower than in common molecular solvents. This may
explain why only low current densities can be obtained for
electrolyses in pure ILs.

These results allow us to suggest the following conclusions.
First, provided that respective viscosities of the IL and cosolvent
are known (at the same temperature), the viscosity of any
mixture of the two compounds can be estimated from eq 3.
Second, when the diffusion coefficient of a species has been
measured, either in one or the other pure liquid or in a mixture
of them, approximate values in other IL+ cosolvent mixtures
can be easily calculated by using eq 4.

The ionic conductivity (σ) is another parameter that has a
large influence on the ohmic drop observed during electrolyses.
Therefore, we have investigated the variation in the conductivity
of cosolvent+ ILs mixtures. Table 4 and Figure 2 present results
obtained with either DMF (4) or 3-picoline (5), which are both
fully miscible with the three ILs employed. For low to moderate
mole fraction of cosolvent (0 to 0.4), the behavior is almost the

same with one or the other cosolvent; the conductivity seems
to be mainly dependent on the viscosity of the medium. A
difference appeared between DMF and 3-picoline for supple-
mentary additions. With the polar solvent DMF, very high values
of conductivity were obtained when the mole fraction of DMF
reached values between 0.75 and 0.9 (mass fraction) (55 to
70) %). We can remark that these mixtures have valuable
properties for electrochemical applications since their conductiv-
ity reaches values higher than those obtained in DMF with
concentrated electrolytes.29 On the other hand, the increase in
conductivity was more moderate with a less polar solvent like
3-picoline. Since variations of viscosity are not very dependent
on the choice of added cosolvent,8,9 this cannot explain these
different behaviors. Then, as already reported for ILs or other
highly concentrated electrolytes,14,29,30we assume that in a pure
IL or in mixtures of an IL with a solvent of low dielectric
constant, ionic associations play a significant role so leading to
low or only moderate values of ionic conductivity. In exchange,
the dissociation of ions pairs will be considerably enhanced in
the presence of a polar solvent. In this way, the addition of
DMF to an IL produces simultaneously a decrease of viscosity
and an increase in the amount of charge carriers so yielding
high levels of conductivity.

Table 2. Comparison of the Experimental Viscosity of Pure IL (ηIL )
and Constant A (see eq 3) with Literature for bmimBF4 (1),
bmpyNTf2 (2), and hmpyNTf2 (3) + DMF (4) Binary Systems

ηIL/mPa‚s A

system T/K lit exptl lit exptl

(1) + (4) 293 112,a 154b 4.35b

295.2 122.9 4.38( 0.32
298 110.3,c 180d 4.63c

(2) + (4) 295.2 80.0 3.86( 0.33
298 76,d 70,e 85f

(3) + (4) 295.2 119.8 4.18( 0.60

a Ref 31.b Ref 8. c Ref 9. d Ref 14.e Ref 26. f Ref 19.

Table 3. Ferrocene Diffusion Coefficient (DFc) in bmimBF4 (1) or
bmpyNTf2 (2) + DMF (4) Mixtures at T ) 295.2 K with Standard
Deviation s(DFc)

(1) + (4) (2) + (4)

x4 106 DFc/cm2‚s-1 x4 106 DFc/cm2‚s-1

0.00 0.04 0.00 0.08
0.10 0.05 0.10 0.12
0.20 0.08 0.20 0.18
0.30 0.14 0.30 0.27
0.40 0.22 0.40 0.40
0.50 0.34 0.50 0.59
0.60 0.56 0.60 0.81
0.70 0.88 0.70 1.20
0.80 1.40 0.80 1.80
0.90 2.40 0.90 2.60
0.95 3.20 0.94 3.00
0.97 3.40 0.97 3.10

s(DFc)/cm2‚s-1

5.8× 10-8 5.0× 10-8

D ) kT
cπηr

(4)

Figure 2. Conductivity (σ) of IL vs mole fraction of cosolvent (cs),T )
295.2 K.9, bmimBF4 (1) + DMF (4); 2, bmimBF4 (1) + 3-picoline (5);
[, bmpyNTf2 (2) + DMF (4); ×, bmpyNTf2 (2) + 3-picoline (5). (a) Bu4-
NBr 0.2 mol‚L-1 in DMF (4); (b) KCl 0.1 mol‚L-1 in water.

Table 4. Conductivities (σ) of bmimBF4 (1) or bmpyNTf2 (2)
Mixtures with DMF (4) or 3-Picoline (5) at T ) 295.2 K

(1) + (4) (1) + (5) (2) + (4) (2) + (5)

σ σ σ σ

x4 mS‚cm-1 x5 mS‚cm-1 x4 mS‚cm-1 x5 mS‚cm-1

0.000 3.75 0.000 3.78 0.000 2.80 0.000 2.80
0.088 4.64 0.061 4.40 0.144 3.87 0.029 3.53
0.161 5.51 0.114 4.76 0.252 4.95 0.057 3.35
0.224 6.29 0.162 5.20 0.336 6.12 0.095 3.67
0.324 7.90 0.205 5.55 0.403 7.40 0.153 4.16
0.366 8.71 0.244 5.88 0.457 7.80 0.194 4.45
0.434 10.33 0.279 6.16 0.519 9.81 0.249 4.67
0.490 11.69 0.340 6.74 0.574 11.05 0.338 5.22
0.535 12.96 0.392 7.20 0.637 13.17 0.387 5.78
0.606 15.49 0.474 8.02 0.716 16.01 0.439 6.06
0.658 17.24 0.568 8.45 0.773 18.49 0.490 6.35
0.728 20.11 0.659 9.15 0.835 20.95 0.540 6.86
0.793 23.15 0.721 9.28 0.871 21.65 0.591 7.26
0.828 24.03 0.763 9.36 0.894 21.70 0.640 7.61
0.852 24.37 0.798 9.40 0.910 21.20 0.691 7.93
0.906 24.36 0.838 8.38 0.931 19.83 0.743 8.14
0.957 18.27 0.866 7.47 0.953 17.04 0.794 8.08
0.973 13.92 0.906 5.90 0.971 13.12 0.845 7.71
0.981 11.28 0.928 4.74 0.981 10.10 0.896 6.65
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The various parameters (η, DFc, σ) investigated in this work
are obviously also dependent on temperature. For this purpose,
the viscosity and the ionic conductivity of several ILs+
cosolvent mixtures were measured in the range of temperature
(295.2 to 328.2) K. Results obtained for the binary system
hmpyNTf2 + DMF are presented in Table 5 and Figure 3. They
show that, for all mixtures, the viscosity depends on temperature
according to the classical Andrade equation analogous to the
Arrhenius law (eq 5):

whereη° is a constant andEa is the activation energy.
From these Arrhenius plots, values of activation energy

corresponding to various mixtures hmpyNTf2 + DMF were
calculated and given in Table 5. TheEa value found for pure

hmpyNTf2 agrees well with previous data collected for pure
ILs such as pyrrolidinium or imidazolium salts.31 As expected,
heating of the IL or its mixture with a cosolvent results in an
increase in conductivity. Some examples presented in Table 6
and Figure 4 show that Arrhenius dependence applies also to
the conductivity. Finally, the diffusion coefficient of ferrocene
was measured in the range (295.2 to 325.2) K in hmpyNTf2

containing a mole fraction of 10 % DMF. PlottingDFc as a
function ofT-1 (Table 7, Figure 5) indicates once more a quite
good fit with the Arrhenius model. The experimental results
obtained for the variation ofDFc with temperature agree well
with variations calculated from the Stokes-Einstein equation
(eq 4) using our experimental values of viscosity. Activation
energies for different mole fraction of DMF are given in Tables
5, 6, and 7 for viscosity, conductivity, and ferrocene diffusion
coefficient. Therefore, when starting from a pure IL, either
addition of a cosolvent or increase of temperature produces
significant modifications of viscosity and, consequently, of
conductivity and diffusion coefficient of a solute. We thought
interesting to attempt to have a general view on what will be
obtained by combining both effects. This can be illustrated by
a three-dimensional graph, and one example is presented in
Figure 6. The gray surface represents the envelope of the two
series of curves (full lines), which were obtained from data given
in this paper by plotting the viscosity either as a function of

Table 5. Viscosities (η) of hmpyNTf2 (3) Mixtures with DMF (4) from T ) 295.2 K to 325.2 K and Calculated Activation Energy (Ea) with
Standard Deviation (s(η)) for Viscosity

η/mPa‚s Arrhenius plot

x4 T ) 295.2 K T ) 300.2 K T ) 305.2 K T ) 310.2 K T ) 315.2 K T ) 320.2 K T ) 325.2 K Ea/kJ‚moL-1 s(η)/mPa‚s

0.000 119.8 96.8 79.6 64.8 54.2 45.9 38.9 30.0( 0.8 0.25
0.104 83.0 67.5 55.8 45.9 38.0 32.4 27.6 29.4( 0.7 0.14
0.205 56.7 47.2 39.8 33.6 28.8 24.8 21.8 25.6( 0.7 0.12
0.301 42.9 36.4 30.8 26.3 22.6 19.5 16.9 24.8( 0.1 0.02
0.402 28.1 24.0 20.9 17.9 15.7 13.9 12.0 22.4( 0.6 0.04
0.500 19.6 17.0 14.7 13.0 11.4 10.0 9.1 20.6( 0.7 0.04
0.599 12.0 10.5 9.3 8.4 7.5 6.8 6.2 17.5( 0.7 0.03
0.700 5.5 5.1 4.7 4.3 3.9 3.6 3.4 13.3( 0.8 0.02

Table 6. Temperature Dependance of Conductivities (σ) of
HmpyNTf 2 (3) Mixtures with DMF (4) and Calculated Activation
Energy (Ea) with Standard Deviation for Conductivity ( s(σ))

σ/mS‚cm-1

T/K x4 ) 0.1 x4 ) 0.5 x4 ) 0.9

293.2 1.55 3.82 16.82
295.2 1.70 4.18 17.40
298.2 1.91 4.70 18.23
301.2 2.11 5.22 19.04
303.2 2.24 5.57 19.58
305.2 2.39 5.92 20.15
308.2 2.60 6.45 21.01
311.2 2.80 6.97 21.87
313.2 2.95 7.32 22.43
315.2 3.10 7.67 23.05
318.2 3.30 8.19 23.93
321.2 3.51 8.71 24.80
323.2 3.65 9.10 25.44
Ea/kJ‚mol-1 22.1( 1.3 22.4( 1.4 10.8( 0.1
s(σ)/mS‚cm-1 0.02 0.05 0.01

Figure 3. Arrhenius plots for viscosity (η) in hmpyNTf2 (3) pure or added
with DMF (4). [, x4 ) 0; 9, x4 ) 0.1; 2, x4 ) 0.2; ×, x4 ) 0.3; -, x4 )
0.4; b, x4 ) 0.5; +, x4 ) 0.6; -, x4 ) 0.7.

η ) η° exp[Ea

RT] (5)

Table 7. Temperature Dependance of Ferrocene Diffusion
Coefficient (DFc) in hmpyNTf 2 (3) + DMF (4) (x4 ) 0.1) and
Calculated Activation Energy (Ea) with Standard Deviation for
Ferrocene Diffusion Coefficient (s(DFc))

T/K 106 DFc/cm2‚s-1

295.15 0.073
300.15 0.098
304.15 0.12
309.15 0.13
316.15 0.18
321.15 0.20
326.15 0.24
Ea/kJ.mol-1 29.4( 4.2
s(DFc)/cm2‚s-1 2.7× 10-9

Figure 4. Arrhenius plots for conductivity (σ) in hmpyNTf2 (3) + DMF
(4). 9, x4 ) 0.1; 2, x4 ) 0.5; ×, x4 ) 0.9.
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mole fraction of DMF at various temperatures or as a function
of temperature for various mixtures IL+ DMF. For instance,
the viscosity of pure hmpyNTf2 at room temperature (≈ 120
mPa‚s) can be approximately divided by two when adding a
mole fraction of 20 % DMF (Figure 6, mark A) or by three
when heating the IL up to 325.2 K (Figure 6, mark B) or even
divided almost by six when combining both actions (Figure 6,
mark C).

Conclusion

In conclusion, the pure ILs employed at room temperature
are not quite suitable solvents for electrosynthetic purposes.
Their high viscosity and moderate conductivity are strong
limitations preventing an easy mass transfer of charge carriers
and of electroactive species that produce high ohmic drop even
for moderate current densities. The heating of solutions affords
significant improvements by decreasing the viscosity. However,
this mean may be unsuitable when chemicals or devices are
poorly heat-resistant, for instance when using a cell divided by
an ion exchanger diaphragm. Another means to obtain well-
adapted electrolytic media is then the addition of a cosolvent.
In considering the access to less viscous media, only the
viscosity and the ratio of the cosolvent are determinant factors.
For this purpose, the selection is very large, provided that the
cosolvent is miscible in the IL, chemically compatible with the
aimed electrosynthesis, and also well-suited for economical and
environmental aspects. Concerning an increase in the ionic
conductivity, better results will be obtained when the cosolvent
is chosen among the polar ones. Moreover, combining both
effects of temperature and cosolvent provides a large range of
possibilities in order to obtain experimental conditions which

are very appropriate to perform within organic electrosynthesis
and which would not present processing problems.
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